Heat Transfer Enhancement of a Flat Plate Boundary Layer Distributed by a Square Cylinder: Particle Image Velocimetry and Temperature-Sensitive Paint Measurements and Proper Orthogonal Decomposition Analysis
Authors
Abstract:
The current empirical study was conducted to investigate the wall neighborhood impact on the two-dimensional flow structure and heat transfer enhancement behind a square cylinder. The low- velocity open-circle wind tunnel was used to carry out the study tests considering the cylinder diameter (D)-based Reynolds number (ReD) of 5130. The selected items to compare were different gap height (G/D= 0.0, 0.1, 0.2 and 0.8). The flow field was measured using particle image velocimetry (PIV) with high image-density camera. The PIV-derived time-averaged quantities, including the streamline pattern, streamwise velocity fluctuation intensity, and reverse-flow intermittency, were examined for the flow past the square cylinder. The measurements of PIV were decomposed with the help of proper orthogonal decomposition (POD) approach that provides a proper view of the POD modes. To obtain the value of the heat transfer enhancement behind the square cylinder, the full-field temperature distributions of flat plate were measured through the temperature-sensitive paint (TSP) technique. Results showed that the maximum heat transfer enhancement was obtained at G/D=0.2 due to the high unstable flow near the wall.
similar resources
Proper Orthogonal Decomposition and Particle Image Velocimetry in Bat Flight
Correct models of complex flight, such as bat flight, have the potential to foster significant new discoveries in the biological evolution of flight. These models may also provide insight useful for engineering flight vehicles with increased maneuverability and in-flight sensing capabilities. To construct these models, one needs to understand and represent both the complex motion of bat wings i...
full textThe Effect of Square Splittered and Unsplittered Rods in Flat Plate Heat Transfer Enhancement
A square splittered and unsplittered rod is placed in a turbulent boundary layer developed over a flat plate. The effect of the resulting disturbances on the local heat transfer coefficient is then studied. In both cases the square rod modifies the flow structure inside the boundary layer. As a result, a stagnation point, a jet and wake area are generated around the square rod, each making a co...
full texteffect of jet and wake on boundary layer disturbance and heat transfer enhancement from a flat plate
0
full textStudy of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He’s Homotopy Perturbation Method
full text
Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer
The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...
full textOptimization of Heat Transfer Enhancement of a Flat Plate Based on Pareto Genetic Algorithm
A quad inserted into a turbulent boundary layer of a flat plate and its effect on average heat transfer and the friction coefficient is studied. To optimize this effect, the edge sizes and distance of the quad from the flat plate are continually modified. In each case, simultaneously the heat transfer enhancement and reduction in skin friction are analyzed. For optimization, the genetic algorit...
full textMy Resources
Journal title
volume 31 issue 11
pages 1962- 1971
publication date 2018-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023